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In the theoretical framework of the Floquet instability analysis we have investigated the onset instability of
the one-dimensional pendulum array, a macroscopic expression of the Frenkel-Kontorova chain, subjected to
vertical vibration after the continuum approximation. The Floquet instability calculation shows that the onset
instability of the array always responds to the forcing frequency subharmonically. The theoretical predictions
of the critical forcing conditions and onset instability waves have been validated by experiments. Good
agreement between the theoretical calculations and experimental observations has been achieved for the onset
instabilities with both long and short wavelengths.
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I. INTRODUCTION

The Frenkel-Kontorova �FK� chain �1�, a chain of classi-
cal particles �atoms� coupled with their nearest neighbors
and subjected to a periodic on-site �substrate� potential, has
become one of the fundamental and universal models to de-
scribe the structure and dynamics of a crystal lattice in the
vicinity of the dislocation core in recent years. Many physi-
cal phenomena including the adsorbed monolayers �2�, Jo-
sephson junctions �3�, and charge density waves �4�, can be
investigated in the framework of the FK model. With the
rapid development of nanotechnology, some fundamental
physical topics, such as heat conduction �5,6� and solid fric-
tion �7�, have also been studied based on the FK model re-
cently. As a low-dimensional nonlinear physical model, soli-
tary �localized� waves �8,9�, chaos �10�, and spatiotemporal
chaos �11� can appear in the FK chain. Most of the investi-
gations of the FK model are in theory or based on computer
simulation. In a macroscopic experiment, the FK chain can
be usually expressed as an array of coupled pendulums
�12–16�. The pendulum array must be put on a vibrating
table to supplement the energy due to the experimental
damping. Many nonlinearly localized phenomena, such as
kinks �12� and breathers �13�, have been observed in this
excited pendulum array. However, those localized waves
usually do not appear spontaneously. In other words, we may
give a suitable initial swing to help the formation of a certain
solitary wave. In most cases, with the increase of the excita-
tion the pendulums swing to form a nonlocalized wave with-
out the experimenter’s help, which means the onset instabil-
ity of the excited pendulum array is not a localized wave.
The so-called onset instability here denotes the primary en-
velope wave appearing in the array when it is driven from its
stationary state to swinging. As is well known, the onset
instability is an important topic in wave theory, such as in
hydrodynamic �17,18�. The onset instability of the FK chain
relates to many physical backgrounds. We take the heat con-
duction in crystal �5,6� as an example, if the onset instability
of the FK chain is nonlocalized, then we can expect that the

temperature distribution is uniform in crystal when the crys-
tal is heated from absolute zero. Furthermore, the properties
of the onset instability, such as its frequency and wave num-
ber, relate to the thermodynamic behaviors of the crystal
closely. However, both the temporal and spacial properties of
the onset instability together with the critical forcing condi-
tions remain unknown yet in the excited FK chain theory. In
this paper, we will study the onset instability of an array
subjected to parametrical excitation in the theoretical frame-
work of a Floquet instability analysis �17�. Then we conduct
the corresponding experiments to prove the validity of the
theoretical results. In the next section, a linear instability
analysis will be developed theoretically for the parametri-
cally forced pendulum array. In Sec. III we will show the
main numerical results of the onset instabilities and their
corresponding critical forcing conditions. The corresponding
experimental validation will be arranged in Sec. IV. Finally,
we will present a summary together with a discussion.

II. FLOQUET INSTABILITY ANALYSIS FOR THE FORCED
PENDULUM ARRAY

We consider an array of N pendulums coupled to their
nearest neighbors and forced vertically. All the pendulums
are of same mass m and same pendulum length l. The intrin-
sic angular frequency of the uncoupled pendulums is �0

=�g
l with g being the acceleration due to gravity. The angle

�n of the nth pendulum in the array satisfies the dynamics
equation

ml2�̈n + �l�̇n − k2���n+1 − �n� − ��n − �n−1�� − k4���n+1 − �n�3

− ��n − �n−1�3� = − ml�g + Ae�
2 cos �t�sin �n, �1�

where the overdots denote the derivative with respect to the
time t, k2 and k4 describe the harmonic and quartic coupling
strengths, � is a damping parameter, and Ae and � are the
amplitude and angular frequency of the excitation, respec-
tively. The pendulums at the both ends of the array are fixed,

�1 = �N = 0. �2�

We are now interested in the primary instability of the
array subjected to the vertical vibration, a typical case of*Corresponding author. Electronic address: wzchen@nju.edu.cn
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small-amplitude motion, so that Eq. �1� can be linearized to

ml2�̈n + �l�̇n − k2���n+1 − �n� − ��n − �n−1��

= − ml�g + Ae�
2 cos �t��n. �3�

Furthermore, the finite differences in Eq. �3� are substituted
by their differentials in the long-wavelength approximation
�12,13�, for the phase-matched mode,

��n+1 − �n� − ��n − �n−1� � a2�xx, �4�

and for the phase-mismatched mode,

��n+1 − �n� − ��n − �n−1� � �− 1�n+1�a2�xx + 4�� , �5�

where the subscript x denotes the derivative with respect to
the continuum variable x describing the spatial position of
the pendulum in the array and a, the lattice constant, is the
space between two neighbor pendulums, respectively. The
so-called phase-matched and phase-mismatched modes mean
that each pendulum has 0 and � phase differences from its
immediate neighbors, respectively �12,13�. Under the long-
wavelength approximation �4� or �5�, N ordinary differential
equations �3� for n=1,2 , . . . ,N become a partial differential
equation in 1+1 dimensions,

�̈ + p��̇ + ��0
2 + �pd + 2pl cos �t�� − �pc�xx = 0, �6�

where

p� =
�

ml
, �7�

pc =
a2k2

ml2 , �8�

pl =
Ae�

2

2l
, �9�

and

pd =
4k2

ml2 , �10�

with �=0, �=1 for the phase-matched mode and �=1,
�=−1 for the phase-mismatched mode, respectively.

We now investigate the onset instability for this excited
pendulum array in the theoretical framework of a Floquet
instability analysis �17�. Considering the boundary condition
�2�, we expand the angle ��x , t� into the following form:

��x,t� = e�s+i	��t sin kx �
n=−





anein�t, �11�

where an �n= ±1, ±2, . . . � are expanding coefficients and �s
+ i	�� is a Floquet exponent with s and 	 being real. A
positive growth factor s�0 corresponds to the growth of the
instability and s�0 to the suppression of the instability. The
values 	=0 and 	= 1

2 of the imaginary part of the exponent
correspond to the harmonic and subharmonic responses to
the forcing frequency, respectively. The wave number k in
Eq. �11� is determined by the boundary conditions �2�—that
is,

���x,t��x=0,L = 0, �12�

where L=Na. Obviously the wave number has to be dis-
cretized to satisfy the stationary ends, k=kj =

j�
L

�j=1,2 , . . . �. For the case of the large N, of course, kj regen-
erates to the continuum. Substituting Eq. �11� into Eq. �6�,
we obtain a recursion relation for expanding coefficients an
�n=0, ±1, ±2, . . . �,

qan−1 + ��kj
2 + pn�an + qan+1 = 0, �13�

where

pn =
1

pc
	�s + i�	 + n���2 + p��s + i�	 + n��� + �0

2 + �pd


�14�

and

q =
ml�2

2a2k2
Ae. �15�

Furthermore, Eq. �13� can be rewritten as

�
n=−





�Ml,n + Nl,n�an = 0 �l = 0, ± 1, ± 2, . . . � , �16�

where

Ml,n = �l,n��kj
2 + pn� �l,n = 0, ± 1, ± 2, . . . � , �17�

Nl,n = ��l,n−1 + �l,n+1�q �l,n = 0, ± 1, ± 2, . . . � , �18�

where �n,l is a Kronecker delta function. The nontrivial con-
dition of the homogenous algebra equation �16�,

det�M + N� = 0, �19�

will give us the relation between the growth factor s and
driving parameters, the acceleration amplitude ae=Ae�

2, and
the angular frequency � together with the temporal response
mode 	 and spatial distribution kj. Usually in the framework
of a linear analysis of the instability we can distinguish the
array between the rest and swing by computing the growth
factor s for each spatial mode kj, �j=1,2 , . . . � and temporal
mode 	 under the excitation of ae cos �t. We can also calcu-
late the threshold acceleration amplitude ath�kj� over which
the array may start to swing from rest and to form an envelop
wave with wave number kj by setting s=0 in Eq. �19�.

III. CRITICAL ACCELERATION AND ONSET WAVE
FORM

Before the numerical calculation, it is necessary to trun-
cate the infinity order matrices M and N to a finite order in
Eq. �19�. In other words, we would truncate the summation
in Eq. �16� from �−
 , 
 � to �−Ntrun ,Ntrun� with Ntrun being
an integer. For the truncating number Ntrun the matrices M
and N are of order 2Ntrun if 	=1/2 or 2Ntrun+1 if 	=0.
Although the approximation due to the truncation is unavoid-
able, the calculating precision can always be reached by en-
larging Ntrun. Furthermore, the truncating approximation usu-
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ally possesses a good convergence �17,18�. In fact, the
expanding coefficients an, �n=−Ntrun ,−Ntrun+1, . . . ,Ntrun

−1,Ntrun� are not independent due to the reality of the ��x , t�
in Eq. �11�—that is,

a−n = an
* �if 	 = 0� �20�

or

a−n = an−1
* �if 	 = 1/2� , �21�

where * denotes the complex conjugate.
Taking Ntrun=20 we calculated the threshold acceleration

amplitudes ath for different wave modes kj �j=1,2 , . . . �. The
calculated result is plotted in Figs. 1 and 2 for the phase-
matched mode and the phase-mismatched mode, respec-
tively. In these figures the stability curves ath�kj� present the
usual resonance tongue structure �17–19�. The harmonic and
subharmonic tongues, labeled by H and S in Figs. 1 and 2,
indicate regions where the pendulums become unstable, os-
cillating at an integral multiple frequency � ,2� ,3� , . . . or an
odd half-multiple frequency � /2 ,3� /2 ,5� /2 , . . ., respec-
tively. The tongues at higher wave number kj correspond to
instabilities with shorter wavelengths and higher oscillation
frequencies. Our calculation, of course, is limited to the case
with lower wave number due to the long-wavelength ap-
proximation �4� or �5�. The primary or onset instability wave
takes place at the lowest tangent point of tongues �see the
inset of Fig. 1�. In both phase-matched and phase-
mismatched modes the onset instability waves do not re-
spond to the forcing frequencies harmonically. The pendu-
lums in the array always start to oscillate from the rest at
the half forcing frequency when the exciting acceleration
amplitude increases gradually �see Figs. 1 and 2�. The
critical acceleration amplitudes are ac=0.302 m/s2 and
ac=0.209 m/s2 for phase-matched and phase-mismatched

modes, respectively. It is noticeable that the onset wave in
the phase-mismatched mode needs lower forcing energy than
that in the phase-matched mode.

IV. EXPERIMENTAL VALIDATION

The experimental apparatus used here was similar to those
in Ref. �16� �see Fig. 3�. The experimental array consisted of
N=47 pendulums supported by a rod, with equal spacing a
=20.0 mm from each other. The pendulum mass and length
were m=3.0 g and l=82.0 mm, respectively. Every pendu-
lum was coupled with its nearest neighbor by fixing overlap-
ping points of their V-type pendulum strings �12,13,16�. The
deviations in mass and length were less than 0.003 g and
0.1 mm in our experimental array, respectively.

The array was attached to a vertically vibrating table
driven by an exciter �Brüel & Kjær 4812�. The driven sinu-

FIG. 1. Stability boundary against the phase-matched instability.
Below the curves the pendulums remain at rest. Over the curves the
array starts to oscillate in the phase-matched mode subharmonically
�S� or harmonically �H�. The parameters are � /2�=3.60 Hz, k2

=1.2110−4 J, and �=4.010−5 kg m/s, respectively.

FIG. 2. Stability boundary against the phase-mismatched insta-
bility. Below the curve the pendulums remain at rest. Over the
curves the array starts to oscillate in the phase-mismatched mode
subharmonically �S� and harmonically �H�. The parameters are
� /2�=4.00 Hz, k2=2.3010−4 J, and �=2.4010−5 kg m/s,
respectively.

FIG. 3. Schematic of the experimental apparatus.
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soidal voltage was generated by an exciter controller �Brüel
& Kjær 1050�, then amplified by a power amplifier �Brüel &
Kjær 2707�. An accelerometer fixed on the table provided a
feedback signal to the exciter controller, which holds the
vibration of the exciter accurately. The resolutions of the
frequency and acceleration were 1 mHz and 0.001 m/s2 in
our experimental system, respectively.

A digital image workstation equipped with a high-speed
charge coupled device �CCD� was used to acquire the distri-
bution of the array and its evolution. The images of the pen-
dulums were reflected by a mirror with an inclination angle
of 45° located beneath the array and then captured by the
CCD. The locations of the pendulums were recognized from
the background by an image-processing code and then con-
verted to angular displacements �n �n=1, . . . ,N�. We could
obtain the wave number of the instability by an fast Fourier
transform �FFT� calculating according to �n �n=1,2 , . . . ,N�.
We could also compute the temporal response mode of the
instability by acquiring a time series of a certain pendulum—
e.g., the pendulum at center �n=24�.

In experiment, we adjusted the forcing frequency
f =� /2� to that we desire to do, such as 3.600 Hz in Fig. 1,
then increased the acceleration amplitude gradually until the
pendulums started to swing. For each acceleration amplitude
we kept the excitation for 10 min to judge whether the pen-
dulums were stable or unstable. By this way we can get a
critical acceleration amplitude ac together with all informa-
tion about the corresponding onset instability wave at this
forcing frequency f . The experimental observations sup-
ported the theoretical predictions that the onset instabilities
responded to the forcing frequency subharmonically in both
phase-matched and phase-mismatched modes. The experi-
mental measurements for ac and kc quite well agreed with
those calculated in Figs. 1 and 2 �see Table I�.

In fact, we changed forcing frequency f from 3.500 Hz to
4.200 Hz by a step 0.050 Hz and repeated the measurement
above. In Fig. 4 we show the experimental measurement
results. The critical acceleration amplitude ac has a compli-
cated relation to the forcing frequency f . There is a fre-
quency well in which a low ac can force the array to swing.
On the well wall �f =3.500 or 4.200 Hz�, however, we have
to use a very large ac to excite a wave. The well is located in
the frequency band slightly higher than the double intrinsic
frequency f0=�0 /� �see a downward arrow in Fig. 4�. There
is a valley at f =4.100 Hz in the bottom of the well at which
the critical acceleration amplitude ac reaches its minimum
0.192 m/s2. It is understandable that the well is a result of
the parametric resonance. As the forcing frequency increases,
of course, the wavelength of the onset instability will

become shorter and shorter �see Fig. 5�. As a result, the
wave mode changes from the phase-matched mode to phase-
mismatched mode gradually.

In theory, for a given frequency f we can obtain a stability
boundary like Fig. 1 or 2 by calculating Eq. �19�, then get the
critical acceleration amplitude ac together with the corre-
sponding onset instability wave number kc. These theoretical
computations have been plotted by solid curve for the phase-
matched mode and dashed curve for the phase-mismatched
mode in both Figs. 4 and 5. It is easy to see in Figs. 4 and 5
that the solid and dashed curves agree with the experimental
data well in the lower- and higher-frequency bands, corre-
sponding to longer- and shorter-wavelength regions, respec-
tively. In both of them, however, the data deviate in the
medium-frequency band corresponding to the medium-
wavelength region. As mentioned above the wave with long

TABLE I. Comparison between experimental and theoretical
results.

f �Hz� ac �m s−2� kc �m−1� Mode

Expt. 3.600 0.309 43.4 Matched

Theor. 3.600 0.302 38.6 Matched

Expt. 4.000 0.228 133.7 Mismatched

Theor. 4.000 0.209 114.4 Mismatched

FIG. 4. The onset acceleration amplitude under different forcing
frequencies. The solid curve is for the phase-matched mode, the
dashed one for the phase-mismatched mode. The arrow points to the
double intrinsic frequency f0 of the pendulum.

FIG. 5. The onset wave number under different forcing frequen-
cies. The solid curve is for the phase-matched mode and the dashed
one for the phase-mismatched mode. The arrow points to the double
intrinsic frequency f0 of the pendulum.
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wavelength in the phase-matched mode is a real long wave,
while that in the phase-mismatched mode corresponds a
short wave in fact. Therefore, the instability analysis here
can well explain the observations of the onset instabilities
with both long and short wavelengthes, and may deviate
from the data in medium-wavelength region.

V. SUMMARY AND DISCUSSION

In the theoretical framework of the Floquet instability
analysis we have investigated the onset instability of the one-
dimensional pendulum array subjected to vertical vibration.
The linear instability analysis developed by Kumar �17� has
been used to calculate the critical acceleration amplitude and
corresponding onset instability mode. In the calculation the
long-wavelength approximation has been employed to trans-
form the discrete array to a continuum system. The theoret-
ical calculation can not only precisely compute the onset
instability with long wavelength, but also predict that with
short wavelength because both phase-matched and phase-
mismatched modes have been considered. The calculation
shows that the onset instability of the array always responds
to the forcing frequency subharmonically. And the onset

pattern is a sinusoidal wave with a single wave number,
which is consistent with experimental observations �13,16�.
In experiment, as the forcing amplitude is small the pendu-
lums always swing to form a sinusoidal wave, instead of a
solitary wave. The nonlinear interaction makes the envelop
wave localized when the forcing amplitude is large enough.
There is a frequency well in the energy absorption of the
array from the external excitation. The critical forcing con-
ditions together with the onset instability waves have been
checked by our experiments. Good agreement between the
theoretical calculations and experimental observations has
been achieved for the onset instability with both long wave-
length and short wavelength. A small deviation from the ex-
perimental data has also found when the onset instability is
in the medium-wavelength band because the investigation
here is limited by the continuum-wave approximation.
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